Moult extent differs between populations of different migratory distances: preliminary insights from Bluethroats *Luscinia svecica*

Juan Arizaga, Edorta Unamuno, Ainara Azkona, Maite Laso & Paloma Peón

It is generally accepted that bird species/populations that migrate longer distances undertake less extensive moults than those that migrate shorter distances. First-year Bluethroats of two subspecies with different migratory distances (*Luscinia svecica namnetum* and *L. s. cyanecula*; the latter migrating the further of the two) were captured during the autumn migration period in 2012 in northern Iberia to test whether birds with longer migratory distances display less extensive post-juvenile moults than those that migrate less far. As predicted, the *L. s. namnetum* captured displayed more extensive moult in their greater coverts than the *L. s. cyanecula* but not in their tertials. However, due to the large degree of overlap between the two subspecies, moult extent does not seem to be a useful marker for separating these two subspecies.

Key words: Bluethroat, *Luscinia svecica*, autumn migration, moult strategies, northern Iberia.

Paloma Peón, GIA-Asturias Torquilla. Alonso de Ojeda 2, 5º C, E-33208 Gijón, Spain.
*Corresponding author: jarizaga@aranzadi.eus

Received: 17.09.13; Accepted: 27.10.14 / Edited by Javier Quesada.

Moulting is a highly energy-demanding process that is normally antagonistic with other energetically costly activities such as migration and breeding (Jenni & Winkler 1994, Figuerola & Jovani 2001). Thus, boreal migrant passerine species with little time to moult usually undergo their complete post-breeding/post-juvenile moults in winter and/or only perform a partial moult in their breeding areas (Berthold 1996, Svensson 1996, Svensson & Hedenström 1999, Figuerola & Jovani 2001, Hemborg et al. 2001, Barta et al. 2008). In this latter case, in addition to body feathers, moulting normally only involves some wing feathers and is limited to the tertials, alula and/or great coverts (Jenni & Winkler 1994). Birds from populations with longer migratory distances (compared to resident birds or to short-distance migrants) have less time to moult and thus undergo less extensive moults than populations with longer breeding periods (Hemborg et al. 2001, Neto & Gosler 2006, Barta et al. 2008).

The Bluethroat *Luscinia svecica* is a widespread songbird that breeds over much of Europe (Cramp 1988). Two subspecies, *L. s. namnetum* and *L. s. cyanecula*, breed, respectively, along the Atlantic façade of France and in the lowlands of Europe from northern France to eastern Europe (Cramp 1988). First-year Bluethroats undergo a partial moult before autumn migration that involves all body- and some wing-coverts (including all small and median coverts), none to several greater coverts and, occasionally, the carpal covert, one to two alula feathers and/or one to all tertials (Jenni & Winkler 1994).

Individuals belonging to *L. s. namnetum* subspecies overwinter in southern Portugal and northwestern Africa, while those belonging to *L. s. cyanecula* overwinter from southern Europe (mostly southern Iberia) to tropical
Moult extent in Bluethroats

25

Africa (Zucca & Jiguet 2002, Arizaga & Tamayo 2013, Correia & Neto 2013). Thus, overall, L. s. namnetum performs shorter migrations than L. s. cyanecula and so we would expect first-year L. s. namnetum birds to have a more extensive moult than L. s. cyanecula.

Both subspecies are common during autumn and spring migration in Iberia (Arizaga et al. 2006, 2011). Using data obtained from northern Iberia during the autumn migration period, we aimed (1) to test whether the moult extent of first-year Bluethroats belonging to the subspecies migrating shorter distances (L. s. namnetum) is greater than that of the subspecies migrating relatively longer distances (L. s. cyanecula), and (2) to evaluate whether moult extent can be used as an accurate tool for separating these two subspecies.

Material and Methods

Sampling site and data collection

This study was carried out at three coastal marshes located along the coast of northern Spain (from west to east): Villaviciosa (43°31’N 05°23’W), Urdaibai (43°21’N 02°40’W) and Txingudi (43°21’N 01°49’W). Bluethroats of both subspecies stop over in these wetlands before continuing on to their wintering areas in southern Iberia or Africa (Arizaga et al. 2006, 2011).

During the 2012 autumn migration period (from 15 August to 30 September), Bluethroats were captured with mist nets at each sampling site. This period of time covers almost the whole autumn Bluethroat passage through northern Iberia (Arizaga et al. 2010). Mist-netting was carried out on a daily basis using a constant sampling effort (the same number of mist nets in the same position at each site) during a period of 4 h from dawn onwards. Once captured, each bird was ringed and its age (adults: EURING code 4; first-year birds: EURING code 3) and sex determined (Svensson 1996). We also measured wing length (maximum chord; ± 0.5 mm).

Post-juvenile moult in Bluethroats includes all the lesser and median wing coverts (MiC, MeC, respectively), several greater coverts (GC) and some tertials (TT). Exceptionally, birds have been reported to moult some secondaries, primaries, or primary coverts (de Mesel 1996). We recorded the number of GC and TT moulted by each first-year bird. Non-moulted GC or TT were identified by the presence/absence of an orange-yellowish spot at the tip of the feather; as well, non-moulted feathers are worn and browner than the greyer moulted feathers (Jenni & Winkler 1994).

Data analyses

In the analyses, we considered each individual at each site only once, i.e. recaptures within the same season were excluded to avoid pseudo-replication. No birds were recaptured at one of the other two sampling sites. Given that the post-breeding moult in adult Bluethroats is complete, we only took into account first-year birds. We used wing length to assign each bird to one subspecies or another (L. s. namnetum or L. s. cyanecula), using the criteria outlined by Neto & Correia (2012). Bluethroats were classified as L. s. namnetum if wing ≤ 72 mm (males) or ≤ 70 mm (females). This classification method is reported to be more accurate than formulae established on the basis of Bluethroats captured in breeding areas (Eybert et al. 1999), which have worn plumage (Neto & Correia 2012).

To test whether the proportion of Bluethroats with asymmetric moult limits varied according to the subspecies we ran a chi-square test on a contingency table of two variables: moult asymmetry -yes/no- and subspecies.

To test whether moult extent differed according to the subspecies, we used Generalized Linear Models (GLMs) with the number of GC or TT moulted as response variables, and the subspecies, sex, and their interaction as fixed explanatory factors. We included sex as factor since males often moult more feathers than females (Bojarinova et al. 1999). We used a Poisson distribution with log-lineal link function in the GLM due to the nature (counts of moulted feathers) of the response variables.

To evaluate whether moult extent can be used as a marker to separate these two Bluethroat subspecies, we conducted a Discriminant Analysis (DA) on the number of GC and TT, with subspecies as the grouping variable.

Results

We recorded the number of GC and TT replaced during the post-juvenile moult in 125 first-year
Bluethroats, of which 100 were classified as *L. s. namnetum* and the rest as *L. s. cyanecula* (Table 1).

For GC, the moult limit was found to be asymmetric in 23 Bluethroats (18.4%), a proportion that did not vary with the subspecies ($\chi^2 = 0.853, P = 0.408$). For TT, however, moult limit was found to be asymmetric in only three Bluethroats (2.4%). Given the very low sample size, in the latter case we did not run any test to evaluate whether this proportion varied according to the subspecies.

We found that moult extent varied according to the subspecies for GC but not for TT (Table 2). Thus, *L. s. namnetum* moulted more GC than *L. s. cyanecula* (*L. s. namnetum*: range, 1–10; mean \pm SE, 5.2 \pm 0.3; *L. s. cyanecula*: range, 1–9; mean, 3.8 \pm 0.5; Figure 1). Moult extent did not differ between the sexes (Table 2). The over-dispersion (deviance/degrees of freedom) of the two models was low (GC: 1.4; TT: 1.2).

The DA showed that moult extent was not a good marker for separating the two subspecies ($\lambda_{Wilk} = 0.965, P = 0.122$; discriminating function: $Y = 0.378(GC)+0.048(TT)-1.902$, where GC and TT are the number of moulted GC and TT; percentage of correct classifications: 53.3%).

Discussion

Bluethroats belonging to *L. s. namnetum* replaced more wing feathers than *L. s. cyanecula*, a result that agrees with the hypothesis that birds performing short migrations moult fewer feathers than those undertaking long migrations. However, caution must be taken when drawing conclusions from these results: (1) the data used in this study came from just one sampling year; (2) as only two subspecies were analyzed, this work cannot be used to test the general hypothesis stating that birds that migrate less far undertake more extensive moults than those that migrate further; (3) we have no data on moult duration and the quality of post-juvenile feathers in Bluethroat

<table>
<thead>
<tr>
<th>Site</th>
<th>Male</th>
<th>Female</th>
<th>Unknown</th>
<th>Male</th>
<th>Female</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Txingudi</td>
<td>25</td>
<td>13</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Urdaibai</td>
<td>22</td>
<td>10</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Villaviciosa</td>
<td>14</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1. Number of first-year Bluethroats captured at each site during the autumn migration period of 2012. Bluethroats were sexed as males, females, or unknown. *Nombre de cotxes blaves de primer any capturades a cada lloc durant la migració de tardor de 2012. Els individus es varen sexar com mascles, femelles o sexe desconegut.*

Table 2. Results of the generalized lineal models conducted to test whether the moult extent of the greater coverts and tertials varied between the *L. s. namnetum* and *L. s. cyanecula* subspecies. *Resultats del model generalitzat lineal emprat per testar si l’extensió de la muda de les cobertores grans i les terciàries va variar entre les subespècies *L. s. namnetum* i *L. s. cyanecula*.*
Moult extent in Bluethroats

subspecies, or (4) on other factors that might also affect moult extent (e.g. food availability in each population’s breeding quarters, climatic conditions, hatching date, etc.) (Bojarinova et al. 1999, Figuerola & Jovani 2001, Barta et al. 2008). The ultimate causes explaining why migrants performing longer migrations moult fewer feathers than those that migrate less far are still poorly known in most species (Barta et al. 2008). In our two Bluethroat subspecies, it is possible that *L. s. namnetum*’s more precocious breeding period allows it to moult more extensively (i.e. it has more time to moult) than *L. s. cyanecula*. Most *L. s. namnetum* Bluethroats arrive in their breeding sites in France in March and leave in July or August (Cramp 1988). *L. s. cyanecula* birds, however, reach their breeding sites later (mostly in April) and also depart in July or August (Cramp 1988). Apparently, therefore, *L. s. namnetum* birds have more time to moult. However, we have no detailed data on breeding behaviour (breeding period, occurrence of multiple clutches, etc.) for either two subspecies and so it is impossible affirm that the more extensive moult in *L. s. namnetum* is directly associated with its longer breeding period. In addition, moulting tends to take place more quickly if there is less time to breed (e.g. de la Hera et al. 2009); thus, much still remains to be learnt about the relationship between these factors in the Bluethroat.

Together with other traits such as biometry (Förschler & Bairlein 2010, Arizaga & Barba 2011) and stable isotopes (Hobson & Wassenaar 1997, Hobson et al. 2004) that can be used to assess the origin of a bird (at least over broad geographic areas), moult extent could be used as a proxy of bird origin, especially when it varies latitudinally or longitudinally (but see Hemborg et al. 2001). Although *L. s. namnetum* was found to replace more wing feathers (greater coverts) than *L. s. cyanecula*, the overlap between the two subspecies was very high. Indeed, we should bear in mind that, despite not being recorded at our study sites, some first-year *L. s. cyanecula* birds moult all their GC and hence the moult limit must be looked for in the TT (R. Aymí, pers. comm.). Thus, moult extent (at least if used exclusively) cannot be used as a good marker to separate these subspecies of Bluethroats. Our results highlight that moult extent in Bluethroats (at least in *L. s. namnetum* and *L. s. cyanecula*) cannot be used as an additional complementary tool in studies on connectivity.

Figure 1. Post-juvenile moult extent in the two Bluethroat subspecies that pass through northern Iberia during the autumn migration period. Shades of grey indicate the frequency of feather replacement. Abbreviations: LC, MC, and GC stand for the lesser, medium, and greater coverts, respectively; TT and SS stand for the tertials and secondaries.

Extensió de la muda de dues subespècies de Cotxa blava que passen pel nord de la península Ibèrica durant la migració de tardor. La gradació de grisos indica la freqüència de recanvi de les plomes. Abreviatures: LC, MC i GC es refereixen a les cobertores petites, mitjanes i grans; TT i SS són les terciàries i secundàries, respectivament.
Acknowledgements

Many thanks are due to the people who helped during the field work. This research was partially funded by the Basque Government and the Gipuzkoa Provincial Administration. Ringing permits were issued by the Bizkaia, Gipuzkoa and Asturias provincial administrations. J. Quesada, O. Gordo and two referees provided valuable comments that helped improve an earlier version of this work.

Resumen

La extensión de la muda difiere entre poblaciones con diferente distancia migratoria: resultados preliminares en el Pechiazul Luscinia svecica

Está ampliamente aceptado que las especies o poblaciones d’aus amb distancies de migració més llargues presenten una muda menys extensa que aquelles amb migracions més curtes. Es van capturar cotxes blaves de dues subespècies amb diferents distàncies de migració (Luscinia svecica namnetum i L. s cyanecula, l’última amb major distància migratòria) durant la migració de tardor de 2012 al nord de la península Ibèrica per provar si les aus amb distància de migració més llargues tenen una extensió de muda postjuvenil més gran que les que migren menys. D’acord amb la predicció, L. s. namnetum va mostrar una major extensió de muda a les cobertores grans, però no a les terciàries. No obstant això, l’extensió de la muda no va ser útil per identificar ambdues subespècies a causa del fort solapament dels patrons de muda de les dues subespècies.

References

